

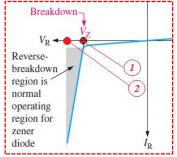
- **1.** State the <u>two conditions</u> that must be satisfied for passing current in diode.
- 2. For zener diode. What is:
 - a. The aim of its design?
 - b. The key for its operation?

- c. The two types of reverse breakdown? (Complete answer using *VI* ch/s).
- **3.** In the rectifier circuits shown in Fig. (i) & (ii). The source is connected to 230V (rms), 50Hz. A load of 100 Ω is used. Assume practical diode (0.7V). Find:
 - (a) DC output voltage. (b) *PIV* of each diode. (c) Output frequency. (d) $V_{P(out)}$.

4. For the clipping circuit shown in the Figure, <u>if</u> <u>ideal diode</u>: Sketch to scale the output waveform of the voltage and current. If the input frequency is 50Hz, What is the value of the output frequency?

1. State the two conditions that must be satisfied for passing current in diode. Answer:

- Source voltage or bias voltage should be greater than barrier potential.
- Positive terminal of the source connect to anode & Negative terminal of the source connect to cathode.

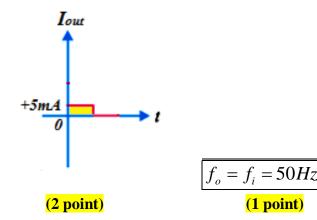

2. For zener diode. What is:

- a. The aim of its design?
- b. The key for its operation?
- c. The two types of reverse breakdown? (Complete answer using VI ch/s).

Answer

Aim: It is used to limit the voltage across its terminals when it is reverse biased.


- Key: It is designed to operate in reverse breakdown.
 - When reaches the reverse breakdown; its voltage is constant even though the current changes drastically.
- **Types:** 1- Zener breakdown V_Z 2-Avalanche breakdown



3. Answer

T.		
Item	Fig (i)	Fig (ii)
(a)	$V_{DC} = \frac{V_{Peak(out)}}{\pi} = \frac{V_{Peak(sec)} - 0.7}{\pi} = 20.47V$ (1 point)	$V_{DC} = \frac{2V_{Peak(out)}}{\pi} = \frac{2(\frac{1}{2}V_{Peak(sec)} - 0.7)}{\pi} = \frac{2*31.8}{\pi} = 20.24V$ (1 point)
(b)	$PIV = V_{Peak(sec)} = 65V$	$PIV = (V_m - 0.7) - (-V_m) = 2V_m - 0.7$
		$=2\frac{1}{2}V_{Peak(sec)}-0.7$
	(1 point)	=2*32.5-0.7=34.7V
		(1 point)
(c)	$f_o = f_i = 50Hz $ (0.5 point)	$f_o = 2f_i = 100Hz \tag{0.5 point}$
(d)	$V_{Peak(out)} = V_{Peak(sec)} - 0.7 = 64.3V$ (0.5 point)	$V_{Peak(out)} = \frac{1}{2}V_{Peak(sec)} - 0.7 = 32.5 - 0.7 = 31.8V$ (0.5 point)

4. Answer

1st year, 2nd Semester MidTerm Exam, 28/3/2016 Electronics (ELC170) - 1 Hr

(1 point)

(1 points) (1 points) (1 points)